
Behavior Evolution in Tomb Raider Underworld

Rafet Sifa∗†, Anders Drachen∗§, Christian Bauckhage†‡, Christian Thurau∗ and Alessandro Canossa§
∗Game Analytics Copenhagen, Denmark
†University of Bonn,Bonn, Germany

‡Fraunhofer IAIS, Sangt Agusitin, Germany
§Northeastern University, Boston, USA

Abstract—Behavioral datasets from major commercial game
titles of the “AAA” grade generally feature high dimensionality
and large sample sizes, from tens of thousands to millions,
covering time scales stretching into several years of real-time, and
evolving user populations. This makes dimensionality-reduction
methods such as clustering and classification useful for discover-
ing and defining patterns in player behavior. The goal from the
perspective of game development is the formation of behavioral
profiles that provide actionable insights into how a game is being
played, and enables the detection of e.g. problems hindering
player progression. Due to its unsupervised nature, clustering
is notably useful in cases where no prior-defined classes exist.
Previous research in this area has successfully applied clustering
algorithms to behavioral datasets from different games. In this
paper, the focus is on examining the behavior of 62,000 players
from the major commercial game Tomb Raider: Underworld, as it
unfolds from the beginning of the game and throughout the seven
main levels of the game. Where previous research has focused
on aggregated behavioral datasets spanning an entire game, or
conversely a limited slice or snapshot viewed in isolation, this is
to the best knowledge of the authors the first study to examine
the application of clustering methods to player behavior as it
evolves throughout an entire game.

I. INTRODUCTION

Over the past decade, principles from business intelligence
have gained substantial traction in commercial game develop-
ment [1], [2]. This for several reasons, for example to inform
decision making across operational and strategic levels. The
advantages of data-driven development in the game industry as
applied to project management and game user research are not
new however, but have had a more limited applicability given
the traditional retail-based business model, and the limited
capacity for data collection on user behavior, performance
and processes. With the increasing availability of data on all
aspects of game development and economics, combined with
the introduction of business models such as Free-to-Play (F2P)
which break with the retail-based paradigm and fundamentally
require analytics to operate, business intelligence methods have
become a topic of substantial interest in commercial game
development [1]–[3].

The interest in business intelligence in game development
has notably been described and debated within the area
of user behavior analytics [1]–[6]. Over the past decade,
principles from fields such as user research, web analytics
[7] and geomarketing have been adopted and adapted for
game development, e.g. for analyzing user-game interaction,
monetization/purchasing behavior and social behavior. These
analyses operate on increasingly larger datasets, obtained from
client-side or server-side logging, i.e. operating in “the wild”.

A central challenge is dimensionality: Games range in com-
plexity from the relatively simple to very complex information
systems supporting millions of users and thousands of potential
user actions and system responses [8]–[10]. Given the com-
plexity of some game forms in terms of the mechanics of the
underlying systems, data mining methods which are able to
reduce the complexity of the behavioral datasets, and provide
actionable insights driving game design, are of interest [1],
[11], [12]. Interpretability and reliability of results is vital, as
decisions based on them affect game design and thus ultimately
the revenue.

II. CONTRIBUTION AND MAIN RESULT

In this paper, a step is taken towards addressing the
challenge of obtaining actionable insights from unsupervised
behavioral clustering in “AAA” level major commercial com-
puter games, based on a 62,000 player behavior dataset from
the AAA-level Tomb Raider: Underworld (TRU). The research
presented focuses on developing and evaluating behavioral
clusters as they evolve during a game, thereby advancing the
current state-of-the-art, which is focused on running behavioral
analysis based on aggregate datasets covering entire games,
or smaller segments viewed in isolation from the rest of the
content of a game.

The main contribution is the presentation and evaluation
of a method for discovering behavioral clusters as they evolve
during a game, and discussion of how to describe cluster
results in a way that is meaningful to game designers. The
method presented is based on Simplex Volume Maximization
(SIVM) [13], an adaptation of Archetype Analysis (AA) that
is applicable to large-scale datasets [14]. SIVM was applied to
playtime distribution of the players per level and to each of the
seven main levels of Tomb Raider: Underworld, resulting in
behavioral clusters or groups, which can be described in terms
of design language [5], [11], [15], and which describe how
player behavior groups evolve during the game, for example
in response to level design changes and learning effects.

III. TOMB RAIDER

In Tomb Raider: Underworld, as any of the previous and
later games in the series, the player takes control of the
games main protagonist, Lara Croft. Croft is thematically a
combination of an action heroine and Indiana Jones. The
games are a combination of adventure games and 3D plat-
former. Historically the emphasis has been on navigation and
exploration, but with Underworld (8th game) the series took
on a greater emphasis on fighting various types of enemies
using a range of different weapons. The Tomb Raider series



of games have been published on multiple different platforms,
including mobile devices. In Underworld, Lara Croft travels
to a number of exotic locations such as Thailand and the Jan
Van Mayen islands.

The gameplay centers around entering forgotten tombs,
gradually exploring a linear storyline, and solving about two
hundred puzzles along the way. The game is played via a third-
person camera to facilitate the 3D platformer gameplay. The
game consists of seven game levels plus a (skippable) pro-
logue. Challenges in the game stem from solving navigational
puzzles, strategic route planning and fighting enemies using
limited resources. The primary and virtually ever-present dan-
ger in the game is falling, but the game also provides different
types of environmental hazards (e.g. traps) and different types
of mobile AI-controlled enemies.

IV. RELATED WORK

Behavior analysis in computer games is a topic of interest
in both game development and game-related research, e.g.
AI [4]–[6], analytics, experience modeling, learning/serious
games and game psychology [1], [2]. Segmentation analysis,
cohort analysis, funnel analysis, clustering and classification
are methods that see widespread use due to their ability to
dissect a population of players according to their behavior,
in order to drive design decisions or inform agent behavior,
adaptive games etc. [11], [16]. The state-of-the-art (SOTA) of
clustering and classification techniques in game industry and
game research was recently provided by Drachen et al. [14],
and will therefore only be covered briefly here, focusing on
the industry side.

Industry: With regards to the state-of-the-art of behavior
analysis in the game industry, this is as noted by [14] an area
that is difficult to evaluate due to both data and the methods
employed to analyze them being considered proprietary. In
essence, analytics practices have become a means for gaining
a competitive edge in an already competitive marketplace
for interactive entertainment, and this discourages knowledge
sharing [2]. Early work in adopting analytics methods for game
user behavior analysis was championed by Microsoft Studios
Research and applied to e.g. the Halo series of games [10],
[17]. In the past years behavioral analytics has spread to the
rest of the industry and all major publishers have dedicated
analytics teams, although the details of the methods used are
kept confidential. More recently, game industry events such
as the Game Developers Conference [15], industry magazines,
blogs and news sites, as well as middleware analytics tool
providers, provides some insights into the general SOTA but
not specific algorithms used. For example, most middleware
providers in the field provide functionality for segmentation,
funnel analysis and cohort analysis, but not clustering or
classification. Services such as Playnomics, Game Analytics
and Games Analytics offer what appear to be more advanced
forms of player segmentation and behavioral prediction, but the
services are black boxes, and therefore not possible to evaluate.
Most middleware segmentation tools use pre-defined classes,
generally linked with monetization [1], [2]. This approach can
be useful but has the inherent problem of fitting data to classes
that may not exist in the dataset. This is especially problematic
in games of a persistent nature, where the population of players
change over time. Using pre-defined features prevent dynamic

exploration of the dataset, and thus risks missing patterns
of behavior. The use of pre-defined classes for segmentation
should at the least be checked against unsupervised cluster
analysis. Recently, some major game publishers have teamed
up with academic research teams to investigate game data
mining, including e.g. Ubisoft, EA, Sony and Square Enix [2],
and research publications are emerging which are investigating
e.g. server load/network effects, gameplay, social systems
etc. [18]. Some of these research publications, which rests
on industry data, are described below. In recent years, the
emergence of new business models such as F2P has increased
the requirements for data-driven input in decision making
processes [2], [19].

Academia: Within research fields focused on game an-
alytics, game AI, agent modeling, adaptive games, social
network analysis, communication studies and player experi-
ence research, the use of behavioral telemetry has been in
use for over a decade. Research focusing on clustering and
classification remains infrequent. Categorizing players into
behavioral types has been an important topic in game research
for decades, and since the seminal essay by Bartle [20], which
divided players into four types based on the authors personal
experience, has generated a number of attempts to develop
player behavior categories, initially from survey data but
increasingly from in-game behavioral telemetry, e.g. Harrison
and Roberts [21] working with achievement data from World
of Warcraft, or Weber and Mateas [12], who employed a series
of classification algorithms for recognizing player strategy
in StarCraft. Thurau and Bauckhage [22], applied Convex-
Hull Non Negative Matrix factorization to categorize player
guilds in World of Warcraft. Using player experience level
distribution of the guilds the authors extracted 8 different
types of group behavior. Drachen [14] used k-means and
Simplex Volume Maximization to create behavioral profiles
from telemetry data of two commercial Massively Multiplayer
Online Role Playing Games (MMORPG) and First Person
Shooter (FPS) game. Ducheneaut and Moore [23], examined
group player behaviors in the MMORPG Star Wars Galaxies
via action frequency analysis. Finally, Drachen et al. [11] used
Self-Organizing Networks to identify four clusters of player
behavior for 1365 players in Tomb Raider: Underworld. These
were converted into behavioral profiles for the developers of
the game.

In summary, there is as yet no substantial body of knowl-
edge freely available, to guide the application of game data
mining to behavioral telemetry. This includes clustering and
other forms of user grouping techniques. A key concern is
interpretability, which is important given the varied nature of
the stakeholders who are on the receiving end of game analyt-
ics, including designers, producers, managers, programmers,
QA, marketing and user research [2]. Ideally, an expressive
label should be assignable to groups, however, there is no
objective criterion available which defines what a descriptive
representation is. Here the operational definition is that results
are interpretable when they embed data whose basis vectors
correspond to actual data points [11], [24].



V. MINING PLAYER BEHAVIOR USING ARCHETYPAL
ANALYSIS

There are numerous supervised and unsupervised tech-
niques from machine learning and pattern recognition to ana-
lyze the player behavior from the player telemetry. Clustering
algorithms provide a way to analyze such data in an unsuper-
vised manner to yield hidden patterns. Introduced by Cutler
and Breiman [25], Archetypal Analysis is a soft clustering
method that allows us to describe the data entities using convex
combination of extreme entities called archetypes. Given a
dataset with d dimensions and n samples as a column matrix
V d×n, Archetypal Analysis aims to find a set of archetypes
W d×k where k is a non negative integer with k � n and a
set of non-negative coefficients vectors Hk×n that contain the
stochastic belongigness values of each point to the archetypes
with the property 1Thj = 1. Interpreting this as a matrix
factorization problem, we aim to find matrices W and H to
minimize the Frobenius norm ‖V −WH‖ which quantifies
how well the dataset is approximated.

Algorithm 1 Simplex Volume Maximization

Select xi randomly from X
Choose the first basis vector:
w1 = argmaxl dist(xl, argmaxz dist(xi, xz))

for index i ∈ [2, k] do
Let Si−1 be the current simplex with i− 1 vertices.
Find the vertex that maximizes:
wi = argmaxq V ol(S ∪ xq)

Update Si = Si−1 ∪ wi.
end for

Simplex Volume Maximization Algorithm (SIVM) is a
highly scalable linear time approach to find archetypes pro-
posed by Thurau et. al. [13]. Restricting the archetypes to
be data entities, SIVM iteratively finds the archetypes by
fitting a simplex to the data with maximum volume using
Cayley-Menger Determinant. Namely, given a dataset the main
intention of the algorithm is to find data entities that maximizes
the volume of the data-simplex rather than minimizing the
Frobenius norm. The main steps of the algorithm is shown
in Algorithm 1.

The archetypes found by SIVM reside in edges of the
multidimensional space giving an attractive way of analyzing
player behavior telemetry data. That is, rather than concentrat-
ing on central behavior classes, SIVM provides a compact way
of describing the player behavior through extreme behavior.
Another advantage of using SIVM for game telemetry analysis
is the easiness of interpretation as the found basis vectors are
actual players.

VI. DATASET

For the study presented here, a dataset containing player
behavior telemetry from Tomb Raider: Underworld, was an-
alyzed. The dataset is a sample drawn from the Square Enix
metrics servers, covering all data collected for the game during
a two month period (1st Dec 2008 - 31st Jan 2009). The
dataset includes records from approximately 203,000 players,
and includes 706 total features from each player. The game
was launched in November 2008, so the data represent a

time period where the game was recently released to the
public. The behavioral features extracted from the dataset were
originally chosen by Drachen et al. [11] and Mahlman et
al. [16], who analyzed smaller portions of the dataset (1365
and 10,000 players respectively). The earliest of these studies
focused on a smaller set of features and aggregated data
across the entire game. The latter used the full range but was
focused on classification, not clustering. The rules guiding
feature selection were described by Drachen et al. [11] and
fundamentally state that the first features to be selected in an
exploratory behavioral analysis should be those relating to the
primary game mechanics as these are the most descriptive of
the way a game is played and how players can interact with
the game system. TRU is a 3D platformer, with navigation
being a major part of the gameplay, as is solving puzzles and
fighting enemies (fighting was emphasized in the Underworld
game to a higher degree than in previous iterations of the
Tomb Raider game series). The features used for the current
analysis all relate to the core mechanics of the game. This
places some limits on the behavioral features that can be
developed, and the same technique applied in other contexts
and for different purposes may require a different rationale for
feature selection to be applied, for example if the purpose is
to evaluate purchasing behavior [1].

The behavioral features were described in detail in
Mahlman et al. [16] and are therefore only briefly outlined
below:

Player death: The total number of deaths for each player.
There are 4.47 million instances of death registered, across all
levels/MUs and death causes (µ = 71.04, varying from 0-939
death events; σ = 63.86). The death count is dependent on e.g.
how much of TRU that a player has played, and the skill and
playstyle of the player.

Help-on-Demand: The number of times help was re-
quested from the Help-on-Demand (HOD) system integrated
in TRU. The HOD provides help in the form of either
hints or answers on how to handle the puzzles in the game.
Overwhelmingly players request both hints and instruction and
answers jointly if using the HOD system. These two values
were therefore aggregated. A total of 926,734 HOD-requests
are recorded (varying from 0-717, µ = 14.72, σ = 28.8).

Causes of death: The various causes of death in TRU
can be grouped into the following four types (note that death
events caused by game bugs, for example players dying during
cinematic encounters, were not included): Enemies (melee).
Deaths caused by melee enemies, including sharks and tigers,
comprising 3.03% of the total number of death events. Enemies
(ranged). Deaths caused by enemies using ranged weapons,
e.g. mercenary snipers. Comprises 4.14% of the total number
of death events. Environment: Deaths caused by environmental
factors, e.g. fire or traps. Comprises 29.9% of the total number
of death events. Falling: Deaths caused by the player falling.
This cause of death comprises the 62.92% of all death events
making it the dominating way to die in TRU - as would be
expected from the game design.

These numbers vary from those reported in [11], and it is
important to note that the samples are different: in the study
of Drachen et al. [11], a sample of 1365 players was used who
completed the game, whereas the current sample is comprised



of players who completed the first level in the game.

Adrenalin: The number of times the adrenalin feature was
used. The adrenalin feature is an advanced gameplay feature,
which when activated slows down relative execution time,
allowing the player better time to perform special attacks etc.
When activated, a cursor has to be moved to the head area
of the target, which will trigger a headshot event. Adrenalin
use requires a certain amount of skill (and interest in using
the feature). This is reflected in that only 53.3% of the players
use the feature. Activation of the adrenalin feature is recorded
291,370 times in the dataset, varying from 0-187 times (µ =
4.63, σ = 10.5).

Rewards: The number of rewards collected. TRU contains
substantial numbers of ancient artifacts, shards and other forms
or relics which players can collect, notably by exploring. A
total of 1,120,708 artifacts/shards were located by the players
in the game (µ =112.08, σ = 86.9).

Playing time: The time that each player spent playing the
game. A total of 97.1 years of playtime were included in the
dataset (including the game prologue) (µ = 13.52 hours).

Setting changes: In TRU, players can change different
parameters of the game. These include four that affect the core
game-play, notably in terms of difficulty. They are therefore
of interest when evaluating player behavior. A total of 15,317
settings changes were made (max 104, µ = 1.53). Only 1740
of the players used this feature of the game, with an average
frequency of µ = 8.8. Settings changes were vastly more
common in the first two levels than the latter five, possibly
reflecting the players adjusting the difficulty parameters of the
game early on, until they are satisfied. The four features are
as follows: Ammo adjustment: Adjusts how much ammunition
Lara Croft is able to carry. Changing this setting comprises
29.6% of the total number of settings changes. Enemy hit
points: Changes the amount of hit points that AI enemies
have, either in a positive or negative direction. 31.5% of the
setting changes are of this type. Player hit points: Adjusting
how many hit point Lara Croft (the player character) has,
effectively increasing or decreasing how much damage she can
take before dying. Changing this setting comprises 19.5% of
the total. Saving grab adjustment: The player can change the
recovery time when performing jumps in the game, increasing
the time available to gain a handhold. 19.4% of the settings
changes are included here.

VII. DATA PREPARATION AND ANALYSIS

The dataset was initially cleaned so that records with
missing information were removed. Furthermore, for players
who had played the game more than once, only the first play
through was used. Finally, only players who completed level
1 were included, as the churn rate in the game means that
only roughly 30% of the players who started the game make
it through the (skippable) tutorial and the first level of the
game. Of the players who complete level 1, only about 1:6
actually complete the game. For the current study, the goal
was to evaluate player behavior as they progress through a
game, and therefore it was decided to remove all player who
churn out early in the game. This reduces the 203,000 player
sample to 62,000 players. These roughly correspond to 4.2%
of the total number of players who played the game, meaning

those whose installation and starting of the game was logged
by the Square Enix metrics servers (roughly 1.5 million).

A second typical problem in behavioral analysis in games
is data type mixing and the existence of the outliers. Data type
mixing requires the adoption of normalization strategies such
as min-max and variance (or zero mean, ZMN) normalizations
[26]. ZMN normalizes field values according to mean (µ)
and the standard deviation (σ). The ZMN algorithm subtracts
the values from µ and divides the result by σ. On the other
hand min-max normalization transforms the data into a defined
range using the minimum and maximum values of the field
and the particular range [26]. While data type mixing would
not appear to be an issue in the current study, ZMN and
min-max normalization were both applied to the datasets to
estimate the effect of the choice of normalization strategy,
and the corresponding SIVM results found to be similar.
However, it is important to note that the similar results are
likely the result of the lack of outliers in the two datasets,
i.e. the 1% peeling of the convex hull using the Fastmap
Algorithm [27], that we also applied here to remove the outliers
as described in [14]. As the results from both normalization
techniques were similar, here we present the results from min-
max normalization. Following data preprocessing (cleaning
and outlier removal) and normalization evaluations, SIVM was
applied to the seven sub-samples from TRU, corresponding to
data aggregated across each of the seven levels in the game.

VIII. RESULTS AND DISCUSSION

In this section we describe how we used Archetypal
Analysis to analyze the progression of the behavior of players
from two perspectives. Firstly we analyze how the players
that completed the game (16% of the analyzed players) spent
time in levels. The aim here is to show how the players are
grouped according their completion times per level. Secondly,
incorporating the above mentioned features together with the
total completion time, e.g. number of rewards and number
of HOD requests, we aim to analyze how the playing be-
havior progressively changes across levels. For both of our
applications we presented the results with 6 archetypes. The
decision to use six archetypes rests on two considerations:
1) Representation error difference values indicate that for
most of the levels in TRU, six archetypes forms a good
balance between explanatory strength and representation value
difference, i.e. using six archetypes to seven respectively does
not decrease the representation error value substantially. 2) The
exception is level 2 where error indicates that 5 archetypes
might work better, however in the interest of visualization, it
was decided to keep the number of clusters constant throughout
the analysis.

A. Playtime Profiles

Initially, the play (level completion) time data were ana-
lyzed using SIVM. Using level completing times for players
as features we identified six archetypes showing different
patterns of completion time across the seven levels of TRU.
Figure 1 shows the bar-plots of the completing time per level
for the founds 6 archetypes. In terms of completion time, the
majority of the players (93%) fall into the same archetype,
which is characterized by having a total completion time
across all seven levels of about 15-20 hours. This can be



Fig. 1: Across-level completion time patterns for Tomb
Raider: Underworld, based on six archetypes developed using
SIVM.

visually observed by the 2 dimensional simplex projection of
the belongingness values for each player, as shown in Figure 1,
where the majority of the players are close to the 2nd basis
vector. This aligns with the intended duration of TRU. About
7% of the players fall into one of five archetypes showing
markedly higher completion time profiles, but with all but one
showing a tendency towards longer level completion times the
further into the game we are. This also aligns with the design of
TRUs levels, which get progressively longer and more difficult
throughout the game.

B. Behavioral Clusters

Based on the application of SIVM, histograms can be
generated for each of the six archetypes across the seven
levels of TRU. An example is shown in Figure 4, for level
4 of the game, including the hard-clustering results together
with the normalized feature values. From the histograms,
descriptive profiles can be built of each of the clusters. From
the perspective of game design, profiles should be descriptive
of the major behaviors of the clusters, backed by magnitudes
along each feature, which allows for easier interpretation than
numerical descriptives only. In the current case, rather than
using descriptive but symbolic terminology, as in e.g. [14],
cluster profile descriptions were based on the actual behavioral
features, focusing on features that had a high respective value.
For example, a cluster could be characterized by TIME-
REWARDS if it has high respective values for these two
features. This method for describing cluster profiles reduces
the amount of information present in the analysis (in the
example here from 13 to 2 behavioral features), but serves
to draw attention to the highest-value features for each cluster.
In the discussion presented here, low respective feature values
(e.g. rapid completion rate) are also integrated, as low values
are equally important to describe player behavior. Different

Fig. 2: Simplex projection of the mixing coefficients for
players who completed the game, for playtime data only. The
majority of the players fall into one archetype (group), which is
characterized by exhibiting rapid completion times (see Player
2 in Figure 1).

strategies can be leveraged in describing multivariate clusters
[26], the approach suggested here is just one of them.

The archetype profiles developed across each of the seven
levels of TRU varies substantially, across all the measured
aspects of player behavior. The variations notably relate to
playtime, and the completion time for each level consis-
tently plays a significant role in driving the separation of the
archetypes.

Four behavioral profiles are more or less consistent
throughout all levels, with some exceptions. These four profiles
comprise the vast majority of the players in game, across all
seven levels. However, the fraction of the total players for
each level that is included in each of the four clusters varies
to a degree where no multivariate statistical test is needed to
verify this (e.g. the TIME-REWARDS cluster varies from 0.2-
74.6%). The reason cannot be inferred from the dataset but
can relate to: 1)The way the input data are normalized and the
frequency ranges within each feature can inflate the weight of
e.g. the absence or presence of a variable with a small range;
2) The interpretation of the clusters. For example, for level 4,
the TIME-REWARDs cluster is very infrequent at 0.2% of the
total players who completed that level, and it is possible to
argue for similarity between other clusters from level 4 and
the TIME-REWARD type profile. However, no other cluster
for level 4 exhibits the dramatically high completion time
values. 3) Finally, and importantly, the reason could relate
to design restrictions in TRU imposing limits on play-style
variance, and at the same time players varying their play-styles
through the game in a response to the changes in the design of
the different TRU levels (which are intended to vary to pose
ongoing variation and new challenges to the player). That the
distribution of the behavioral clusters in level 4 is different
than any other level could support this hypothesis as this is an
unusual level in terms of length, frequency of ranged enemies
and number of death events [16]. The strength of the forcing
from the design onto the behavior of the user is difficult to
measure quantitatively, but forms an interesting subject for
future research.

On an additional note, when Drachen et al. [11] analyzed a
small subsample of the current dataset (1365 players), aggre-
gating a smaller set of behaviors across the entire game, four



Fig. 3: Stacked bar chart showing the distribution of different behavior profiles across the seven levels of Tomb Raider:
Underworld (2008, Crystal Dynamics/Square Enix). Each profile labeled according to the features that are most frequent
within each profile (an alternative would be to focus on features with less frequency. For example, a low playtime score
indicates players that relatively rapidly complete the level. Labels could also be assigned based on a mixture of features,
for example based on key game mechanics. Cluster profiles and their corresponding web colors are as follows: Recurrent
clusters: DEATH-REWARD-CAUSES OF DEATH (Pacifists): dark orange; ADRENALIN-REWARD (Veterans): light green;
HOD-REWARD-ENVIRONMENT: dark turquoise; TIME-REWARDS (Solvers): yellow. Clusters occurring in a single or
max. two levels, by level: (1) MELEE-ADJUSTMENTS: magenta, DEATH-FALL-SAVINGS GRAB ADJUSTMENT: white.
(2) ENVIRONMENT-SAVINGS GRAB ADJUSTMENT: cyan; REWARDS-ENEMY HITPOINT ADJUSTMENT: purple. (3)
ENVIRONMENT-ADJUSTMENTS: light coral; DEATH-MELEE: gold; DEATH-REWARDS-RANGED: maroon. (4) DEATH-
FALL-ADJUSTMENTS: silver; ADJUSTMENTS: oak brown; DEATH-ENVIRONMENT-REWARDS: platinum. (5) DEATH-
REWARD-FALL: burgundy. (6) SAVINGS GRAB ADJUSTMENT: dark forest green; TIME-DEATH-FALL: red. (7) DEATH-
REWARD-ENVIRONMENT: black. Best viewed in color.

behavioral clusters were found which contained over 90% of
the players. The four profiles were Runners, Pacifists, Solvers
and Veterans. The latter three correspond to three of the con-
sistent profiles found in the current dataset. This should not be
taken as meaning that aggregate-level dimensionality reduction
analysis is as informative as progression-based (evolutionary
in the current terminology), however, as the current analysis
shows a high degree of variance in the percentage distribution
of these behavioral clusters across the levels of TRU. The four
(more or less) consistent clusters are characterized as follows:

DEATH-REWARD-ENVIRONMENT (all levels except
level 3): this cluster is characterized by having the highest
death values of any cluster, across all six levels it is present
in. It is also characterized by commonly having high death
values for melee and ranged enemies, depending on the level.
For example, in level 1 in TRU there are only few movable
enemies, this cluster is characterized by death by environmen-
tal causes. The cluster averages 10.3% of the total players, but
with a SD of 6.7 showing amble variation between the levels.
The behavioral pattern is reminiscent of the Pacifist profile of
Drachen et al. [11], which is also characterized by dying often,
especially from enemies, average completion times but finding
many rewards.

ADRENALIN-REWARD (all levels except level 4,6):
This cluster is characterized by using the adrenalin feature of
TRU, finding many rewards and in general dying rates in the
low-middle range, completing the game fast and making few
adjustments to the game. This cluster profile is reminiscent
of the Veteran profile of Drachen et al. [11]. The profile on
average comprises 3.4% of the players with a SD of 0.96.

TIME-REWARD (all levels): This is generally the most
frequent cluster, comprising 41.4% of the players on average,

but with a high variance (SD = 29.9, mainly driven by level
6 where this cluster only comprises 0.2% of the players). The
players in this cluster overall do well, but are very slow to
complete the game and collect a high number of rewards,
suggesting explorative behavior and taking time to go through
the puzzles in the game to get at even hidden treasures. This
cluster bears resemblance to the Solver profile of Drachen et
al. [11].

HOD-REWARD (all levels): This cluster is characterized
simply by using the HOD system order of a magnitude more
than any other cluster, presumably because the players do
not care for or have problems with the puzzles in TRU,
and collecting relatively many rewards. They feature fast
completion times and in several levels tend to die often from
a variety of causes. This profile is thus reminiscent of the
Runner profile of Drachen et al. [11], with the difference that
the authors found HOD values ranging widely for their Runner
profile, while in the current case this cluster consistently has
the highest HOD values of any cluster at any level. The cluster
comprises 29.9% of the players on average, but with SD = 29.9
(high variance notably due to level 6 forming a clear outlier
where this cluster comprises 89% of the total. Removing level
6 reduces average percentage to 17.8 and SD to 14.2)).

The remaining clusters in the seven levels are confined
to a single or two levels, and usually comprise very small
fractions of the overall number of players (from a fraction
of a percent to a few percent, with one exception a 24.4%
cluster [ADJUSTMENTS] on level 4 that is characterized by a
high value for settings adjustments). The remaining features of
this cluster show some similarity with the TIME-REWARDS
cluster and could be interpreted as forming part of the same
group. Figure 3 depicts the hard clustering results focusing on
the distribution of clustered behavior groups across levels.



Fig. 4: Example of independently analyzing the behavioral
clusters for Level 4. Each cluster illustrates a different type of
behavior varying in one or many features.

C. Behavior Evolution Across Levels

In concert with describing semi-persistent or persistent
behavioral profiles, each level can be viewed independently
in order to evaluate behavior within that level. This approach
is useful for evaluating level design, e.g. to examine if the
clusters in for a given game level conform to the expected
player behaviors. To take an example, a description for level
4 (see Figure 4) could read: Players here fall into three main
clusters. 46% are characterized by very slow completion times
but high relative reward scores. 24% are characterized by rapid
completion times, fairly high death counts, mainly from ranged
enemies, and is reminiscent of one of the smallest clusters
in level 3 that exhibits the same profile (2.7%). 11.6% are
characterized by a high use of the HOD system, and very high
scores in terms of finding rewards, as well as death events
being frequent, although mainly from environmental causes
and falling. Approximately 9% are characterized by having
similar rapid completion times as the five smallest clusters, but
showing a weakness to melee and ranged enemies. While these
players handle the navigational- and puzzle-based challenges
of TRU well, they are challenged by the movable enemies
in the game. Descriptions such as these should in a real-
life context be more detailed to provide e.g. level designers
with actionable feedback on the overall behaviors exhibited
by players (for example during a beta test prior to launch).

The results described above indicate that a few consistent
or almost consistent behavioral profiles form the majority of
the players across the seven levels of TRU. In effect, the
majority of the players follow one of four highly varied play-
styles. The analysis indicates that the same players do not
necessarily adopt the same play-style throughout the game,
as the clusters vary substantially in relative size across the
levels. In the background of this development is the steadily
decreasing number of players, where at the latter levels of TRU

only a fraction of the original 62,000 players are retained (16%
completed the final level). A possible next step is to analyze
the path of specific players across the different through the
game (discussed further below).

D. Discussion

There are several conclusions that can be drawn from
this analysis towards informing game design. For example,
a consistent cluster of users rely heavily on the HOD system,
averaging 29.9% of the players. This indicates that either these
players had problems with the puzzles in TRU, or just did not
care about them and used the HOD system to bypass these
challenges. Irrespective, that almost a quarter of the player base
potentially has a problem, or a feature they ignore, is worth
investigating further, e.g. via drill-down analysis to obtain
more detail on this behavioral pattern [2]. Another example
is formed by the behavioral clusters present in some levels
only, which provides information specific to those levels. For
example, 3% of the players in level 2 die commonly from
environmental causes and use the savings grab adjustment
feature, which could indicate that they have trouble handling
the jumps in that level. This could indicate a level design
issue, and drill-down analysis will be able to inform if it is for
example specific jumps in the level that cause this pattern to
emerge. Other clusters indicate high rates of dying from mobile
enemies, which could lead to player frustration. Examples like
these indicate the usefulness of behavioral clustering across
levels (or segments of a game). Clustering is a high-level early
process analysis that can be used to obtain an idea about the
general patterns of behavior (notably for a centroid seeking
algorithm), and in the case of SIVM and similar convex-hull
methods, the extreme behaviors specifically.

A game analyst, producer, designer or similar who in
a practical context work with profile results such as those
outlined above, should be able to drill down through these
higher-order profile descriptions to investigate the distribution
across all 13 features. Simple descriptions of behavioral clus-
ters are useful to facilitate that users can orient themselves
in the results [2], [11]. In the context of cluster analysis in
potentially high-dimensionality situations, as is common in
game analytics [1], [2], a human interpretation element is
present in an analysis, notably to make decisions about how to
describe behavioral clusters, i.e. to make them actionable to the
target audience. Errors or bias may be introduced during this
interpretation process, and it is therefore necessary in practice
in data mining to allow users of such descriptions to backtrack
(drill down) and view the data informing the descriptive
profiles, in case any results appear suspicious. Current research
is investigating how to improve the visualization of the results,
using the D3.js visualization library for building web-based
interactive visualization of the flow of players between clusters.
The ulterior aim is to enable a general audience to interact
with and explore results as well as associated information,
e.g. general statistics for each TRU level in relation to the
behavioral clustering results. A central limitation of the current
analysis is that it did not consider tracking the migration
of individual players or groups of players along or between
clusters. While evaluating how player behavior breaks down
across a level (or other section of a game) is useful in its own
right, e.g. for evaluating difficulty or if the desired behaviors
are actually manifesting [10], being able to follow the flow



of players between clusters allows for evaluation of the route
players take in an out of a game. For example, evaluating
how players move from novice to expert levels of competence,
or the paths that lead a non-paying user to become a paying
user [1]. This approach is notably interesting in the context
of persistent games such as Massively Multi-player Online
Games (MMOGs) and online games that rely on the Free-
to-Play (F2P) or similar revenue models.

IX. CONCLUSION

The ability to condense high-dimensionality datasets of
player behavior, across millions of players and extended dura-
tions of real-time or playtime, is important to the game industry
as it informs about the overall ways in which users play
specific games. An important requirement is that clusters need
to be interpretable and actionable; and furthermore methods
are needed to address a variety of needs, e.g. finding extreme
behaviors vs. general behaviors [1], [5], [6], [10], [11], [14]–
[16], [28]. In this paper, an approach is presented for defining
and describing behavioral clusters which allows for examining
the ongoing evolution in the behavior of groups of players
throughout a game. The method was applied to a 62,000 player
dataset from the AAA-level commercial game Tomb Raider:
Underworld, and behavioral profiles for clusters of players
described across the seven main levels of the game, using
Simplex Volume Maximization to define archetypes of behav-
ior [13], [24], [25], describable using game design language.
SIVM has been applied to datasets from other games [14],
and the progressive or evolutionary perspective applied here
would appear to be broadly applicable to behavioral clustering
in games in general. The research presented contributes to the
field of game analytics by developing multiple consecutive
clusters, across the playing duration of a game, rather than
focusing on game-level aggregate data or slices of a game
viewed in isolation. In principle, the fundamental approach
suggested in this work can be applied to any type of player
behavior analysis. Current research is investigating how to
improve the visualization of the results, notably towards being
able to present cluster result interactively, with the aim of
giving a non-expert audience the ability to explore the results
and associated information, e.g. general statistics for each TRU
level in relation to the behavioral clustering results.
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